最佳体育竞猜平台(baber2.com)是亚洲优质游戏品牌,综合各种在线游戏于一站式的大型游戏平台,经营多年一直为大家提供安全稳定的游戏环境,最佳体育竞猜平台值得信赖,期待广大游戏爱好者前来体验,最佳体育竞猜平台将把最好的游戏体验带给大家!

欢迎光临武汉大学经济与管理学院最佳体育竞猜平台!
English Version设为最佳体育竞猜平台加入收藏联系方式
学术视点 最佳体育竞猜平台 - 学术视点 - 正文
杨琛*, Kristina P. Sendova, Zhong Li: Parisian ruin with a threshold dividend strategy under the dual Lévy risk model
时间:2020-12-11    点击数:

Abstract: We consider the threshold dividend strategy where a company’s surplus process is described by thedual Lévyrisk model. Namely, the company chooses to pay dividends at a constant rate only whenthe surplus is above some nonnegative threshold. Classically, such a company is referred to be ruinedimmediately when the surplus level becomes negative. Recently, researchers investigate the Parisianruin problem where the company is allowed to operate under negative surplus for a predeterminedperiod known as the Parisian delay. With the help of the fluctuation identities of spectrally negativeLévyprocesses, we obtain an explicit expression of the expected discounted dividends until Parisianruin in terms of the relevant scale functions and certain probabilities that need to be evaluated for eachspecific Lévyprocess. The optimal threshold level under such a threshold dividend strategy is deduced.Applications and numerical examples are given to illustrate the theoretical results and examine howthe expected discounted aggregate dividends and the optimal threshold level change in response todifferent Parisian delays.

Keywords: Parisian ruin,Lévyprocess,Threshold dividend strategy,Dual model,Optimality

本文于2020年1月发表在Insurance: Mathematics and Economics (Vol 90: 135-150)上最佳体育竞猜平台最佳体育竞猜平台最佳体育竞猜平台最佳体育竞猜平台,杨琛为论文的第一作者兼通讯作者最佳体育竞猜平台。Insurance: Mathematics and Economics是精算领域公认的顶级期刊,该期刊为经济与管理学院B+类奖励期刊最佳体育竞猜平台。

文章链接:https://doi.org/10.1016/j.insmatheco.2019.11.002


 
最佳体育竞猜平台